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Quantum statistical mechanics for nonextensive systems
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The traditional basis of description of many-particle systems in terms of Green functions is here generalized
to the case when the system is nonextensive, by incorporating the Tsallis form of the density matrix indexed
by a nonextensive parameterq. This is accomplished by expressing the many-particleq Green function in
terms of a parametric contour integral over a kernel multiplied by the usual grand canonical Green function
which now depends on this parameter. We study one- and two-particle Green functions in detail. From the
one-particle Green function, we deduce some experimentally observable quantities such as the one-particle
momentum distribution function and the one-particle energy distribution function. Special forms of the two-
particle Green functions are related to physical dynamical structure factors, some of which are studied here.
We deduce different forms of sum rules in theq formalism. A diagrammatic representation of theq Green
functions similar to the traditional ones follows because the equations of motion for both of these are formally
similar. Approximation schemes for one-particleq Green functions such as Hartree and Hartree-Fock schemes
are given as examples. This extension enables us to predict possible experimental tests for the validity of this
framework by expressing some observable quantities in terms of theq averages.@S1063-651X~99!10201-0#

PACS number~s!: 05.70.Ce, 05.20.2y, 05.30.Ch
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I. INTRODUCTION

Ever since Tsallis@1# ~also see Ref.@2#! proposed maxi-
mum q entropy for examining nonextensive systems by e
ploying q mean values so as to obtain thermostatistics, it
spawned a large number of investigations on a wide var
of topics in this subject. Here we cite a representative se
such works of current interest in physics along with the v
ues of the nonextensive parameterq associated with some o
the phenomena: Le´vy superdiffusion@3# and anomalous cor
related diffusion@4#; turbulence in a two-dimensional pur
electron plasma (q5 1

2 ) @5#; dynamic linear response theor
@6#; perturbation and variation methods for calculation
thermodynamic quantities@7#; thermalization of an electron
phonon system (q.1) @8#; low-dimensional dissipative sys
tems (q,1) @9#; and some astrophysical applications@10#.
The q values quoted here were either fitted to experimen
obtained from computer simulations or model calculatio
In Ref. @9# and, more recently, Ref.@11#, the relationship
betweenq and the underlying dynamics has been explor
An important result emerging from this study is that t
range of interactions controls the type of sensitivity to init
conditions that a large system will exhibit. Thus the exp
nential sensitivity (q51) of strong chaos is found for sho
range interactions, and the power-law sensitivity (qÞ1) of
weak chaos for long range interactions. Thusq is a measure
of the range and size of the interactions controlling the s
tem behavior. Given these features, it appears expedie
develop methods of dealing with such situations, for wh
the Green function method is one of the most succes
ones. The purpose of this paper is to present an enla
version of our short communication@12# containing a gener-
alization of the thermodynamic Green function~here in
slightly modified form! theory of the quantum statistical me
chanics of many-particle systems@13# when they are nonex
PRE 591063-651X/99/59~2!/1398~10!/$15.00
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tensive in thisq formalism. This modified form is consisten
with a recent reformulation of the formalism in Ref.@14#,
which was put forward to include the invariance property
the ensemble under the choice of origin of the scales
quantities and enables us to develop a diagrammatic th
parallel to the conventional theory. This generalization th
leads us to propose possible experimental tests of nonex
sive features predicted in such a formalism by calculat
measurable quantities such as the momentum distribu
function for electrons measurable in positron annihilati
and x-ray Compton scattering experiments@15#, Bose con-
densation in confined small numbers of atoms@16#, and cross
sections for scattering by external probes such as neutr
photons, etc.@17# in terms of theq mean values. Section I
contains the development of theq Green function theory. In
Sec. II A, the q one-particle Green function is studied
detail using an integral representation so as to include
values of q. In Sec. II B, after a brief discussion of th
q n-particle Green function expression for theq mean value
of the Hamiltonian, various important thermodynamic qua
tities in theq framework are given. We outline a diagram
matic procedure and illustrate it with the Hartree approxim
tion in Sec. II C, and with the Hartree-Fock approximation
Sec. II D. In Sec. II E, we discuss the response functions
their implications in theq framework. This serves as an ex
ample of a two-particle Green function. In Sec. III, we d
velop expressions for various relevant quantities amenab
experimental investigation, with a focus on systems with f
particles. We present expressions for an average numbe
particles obeying Bose and Fermi statistics at low tempe
tures, and also a typical scattering function, using theq for-
malism. We also display these in Figs. 2, 3, and 4. We e
the paper with a summary and concluding remarks in S
IV.
1398 ©1999 The American Physical Society
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II. GREEN FUNCTION THEORY

In this section, we develop the thermodynamic Gre
function theory in describing the properties of nonextens
many-particle systems. This provides a method of discus
properties of nonextensive systems with no more concep
difficulty than those of the extensive systems. The metho
applicable to particles obeying any statistics, and for equi
rium or nonequilibrium situations. We present this develo
ment in five subsections.

A. One-particle Green function

We adopt second-quantized particle creation and ann
lation operators in the Heisenberg representation, as in
standard book by Kadanoff and Baym@13# ~henceforth cited
as KB! to describe a many-particle system whose Ham
tonian operator isĤ and whose number operator isN̂. In this
way we describe nonextensive systems at arbitrary temp
tures, and for boson or fermion systems in equilibrium,
maximizing the Tsallis entropy Sq5(12Tr r̂q)/(q
21). Tr r̂51 andr̂ is the system density matrix, subje
to the constraints of fixedq mean valueŝĤ&q5Tr Ĥ r̂q and

^N̂&q5Tr N̂r̂q ~see Ref.@14# for a discussion for these con
straints!. Thus ^1&q5Tr r̂q511(12q)Sq , and we define
the one-particleq Green function in a form which is differen
from that given in Ref.@12#

G~q!~1,18;b,m!5
1

i ^1&q
^T„C~1!C†~18!…&q

[
1

i ^1&q
Tr @ P̂~Ĥ,N̂;q,b,m!T„C~1!C†~18!…#,

~1!

where

P̂~Ĥ,N̂;q,b,m!5@12b~12q!~Ĥ2mN̂!#q/~12q!/~Zq!q,

Zq5Tr @12b~12q!~Ĥ2mN̂!#1/~12q!, ~2!

Tr P̂~Ĥ,N̂;q,b,m!5
Z̃q

Zq
q

,

with

Z̃q5Tr„12b~12q!~Ĥ2mN̂!…q/~12q!.

Equation~2! is a consequence of the Tsallis entropy ma
mization stated above. Hereb andm are the Lagrange mul
tipliers associated with the two constraints, and have
same significance as the inverse temperature and chem
potential in the usual description. Equation~1! differs from
that in Ref.@12# by the appearance of the factor^1&q . This
definition proves to be very useful in developing a diagra
matic analysis as in conventional Green function theory
will be shown subsequently. Here 1 refers to the space-t
of a particle at (rW1 ,t1), and T is the usual Wick time-
ordering symbol:
n
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T „C~1!C†~18!…5C~1!C†~18! for t1.t18

56C†~18!C~1!

for t1,t18 . ~3!

The creationC†(r 8W ,t) and annihilationC(rW,t) operators
obey the canonical commutation rules~CCR’s! at equal
times:

C~rW,t !C~r 8W ,t !7C~r 8W ,t !C~rW,t !50,

and its Hermitian conjugate, ~4!

C~rW,t !C†~r 8W ,t !7C†~r 8W ,t !C~rW,t !5d~rW2r 8W !.

In the above and in subsequent analysis, the upper sign re
to bosons and the lower to fermions. The definitions for ot
multiparticle q Green functions follow in the same fashio
We may also note that the conventional grand canonical
semble results given by KB are obtained when we take
limit q51 in these expressions.

There is a useful trick to calculateZq in terms of a para-
metric integral over the usual grand canonical partition fu
tion, Z15Tr exp„2b(Ĥ2mN̂)…, which now depends on the
parameter multiplied by a kernel. The first such proposal
Hilhorst ~private communication to Tsallis@18#! was valid
for q.1, which was extended forq,1 by Prato@19#. Here
we employ a contour integral representation, from which
above representations as well as others are obtained
suitable deformation of the contour@20#. We express theq
Green function in terms of a parametric integral over a d
ferent form of the kernel multiplied by the usual grand c
nonical Green function which now depends on this para
eter. The general contour integral form is@21#

b12z
i

2pEC
du exp~2ub!~2u!2z5

1

G~z!
, ~5!

with b.0 and Rez.0, where the contourC starts from1`
on the real axis, encircles the origin once counterclockw
and returns to1`. This representation is very general, fro
which we can obtain other integral representations. In p
ticular, the results of Hilhorst@18# (q.1) and Prato@19#
(q,1) are just deformations of the contour in Eq.~5!. Other
representations are possible, such as@20# (q,1)

exp~ab!b12z

2p E
2`

`

dt
exp~ i tb !

~a1 i t !z
5

1

G~z!
for b.0

50 for b,0, ~6!

with a.0, Rez.0, and 2p/2,arg(a1 i t ),p/2, and
where the countour was deformed fromC to C1 , as shown in
Fig. 1 below. These particular representations are usefu
several specific calculations, for example, for a class
ideal gas@19# and for blackbody radiation@22# with q,1.
However, we employ Eq.~5! in this paper because it is ver
suitable in a general discussion, on the same footing, to
casesq.1, q51, andq,1.
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By taking b512(12q)b(Ĥ2mN̂) and z5111/(1
2q), we obtain the expression forZq , and by takingz
51/(12q) we obtain the corresponding expression for thq
Green function:

Zq~b,m!5E
C
du Kq

~1!~u!Z1„2bu~12q!,m…, ~7!

and

G~q!~1,18;b,m!5E
C
du K̃q

~2!~u!Z1„2bu~12q!,m…

3G~1!
„1,18;2bu~12q!,m…, ~8!

K̃q
~2!~u!5

Kq
~2!~u!

^1&q
,

where

FIG. 1. This figure shows the contour employed to obtain E
~6!.
Kq
~2!~u!52

~12q!u

~Zq!q
Kq

~1!~u!

5 i
G„1/~12q!…

2p~Zq!q
exp~2u!~2u!21/~12q!. ~9!

G(1)(1,18;b,m) is the usual grand canonical one-partic
Green function given by KB. Similar expressions hold f
the multiparticleq Green functions. In addition, the dynam
linear response function derived in Ref.@6# will be re-
expressed in terms of the parametric integral over the u
time-response functions@13#. It should be remarked that in
all subsequent analysis the choice of the deformations of
contour in theu integration is such that the resulting integra
are all convergent, and this feature gives us the condition
q mentioned above and discussed in detail by Lenzi@20#.

Following KB, we introduce correlation functions

G.
~q!~118;b,m!5

1

i ^1&q
^C~1!C†~18!&q ,

~10!

G,
~q!~118;b,m!5

6

i ^1&q
^C†~18!C~1!&q .

The notations. and , are intended to exhibit the featur
that G(q)(1,18;b,m)5G.

(q)(1,18;b,m) for t1.t18 and
G(q)(1,18;b,m)5G,

(q)(1,18;b,m) for t1,t18 . Using Eq.~8!,
we may similarly expressG.

(q) andG,
(q) in terms of the cor-

responding grand canonical correlation functions. The sp
tral weight function in frequency space, obtained by taki
the Fourier transform with respect to time difference
A(rW1 ,rW18 ;v), introduced by KB, reflects only the propertie
of the HamiltonianĤ. The average occupation number in th
grand canonical ensemble of a mode with ene
v, f (v,b)5@exp„b(v2m)…71#21, takes account of the
basic permutation symmetry of the system. We can thus
pressG.

(q) andG,
(q) in terms of these in the following ways

.

iG.
~q!~rW1 ,rW18 ;v;b,m!5E

C
du K̃q

~2!~u!Z1„2bu~12q!,m…iG.
~1!
„rW1 ,rW18 ;v;2bu~12q!,m…

5E
C
du K̃q

~2!~u!@16 f „v,2bu~12q!,m…#A~rW1 ,rW18 ;v!Z1„2bu~12q!,m…, ~11!

iG,
~q!~rW1 ,rW18 ;v;b,m!5E

C
du K̃q

~2!~u!Z1„2bu~12q!,m…iG,
~1!
„rW1 ,rW18 ;v;2bu~12q!,m…

56E
C
du K̃q

~2!~u! f „v,2bu~12q!…A~rW1 ,rW18 ;v!Z1„2bu~12q!,m…. ~12!

Thus the spectral weight function is found to be

A~rW1 ,rW18 ;v!5 i „G.
~q!~rW1 ,rW18 ;v;b,m!2G,

~q!~rW1 ,rW18 ;v;b,m!…5E
C
du K̃q

~2!~u!A~rW1 ,rW18 ;v!Z1„2bu~12q!,m…. ~13!

From this we deduce an important sum rule
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i E
2`

` dv

2p
„G.

~q!~rW1 ,rW18 ;v;b,m!2G,
~q!~rW1 ,rW18 ;v;b,m!…5E

C
du K̃q

~2!~u!d~rW12rW18!Z1„2bu~12q!,m…5d~rW12rW18!.

~14!

This is just an expression of the equal time CCR of the particle fields. For a uniform system, we can take Fourier tra
with respect torW12rW18 in Eq. ~12!, and express the one-particle momentum distribution function^N̂(pW )&q in terms of the
spectral weight function of theN-particle system.

^N̂~pW !&q56E
C
du Kq

~2!~u!E
2`

` dv

2p

A~pW ;v!Z1„2b~12q!u,m…

~e2b~12q!u~v2m!71!
~15!

Similarly the one-particle frequency distribution function^N̂(v)&q is given by

^N̂~v!&q56VE
C
du Kq

~2!~u!
Z1„2b~12q!u,m…

~e2b~12q!u~v2m!71!
E dDp

~2p!D
A~pW ;v!. ~16!

HereV is the volume of theD-dimensional space in which the particles reside. The chemical potential is determined
expression for theq mean value of the total number operatorN̂,

^N̂&q

V
56E

C
du Kq

~2!~u!E
2`

` dv

2pE dDp

~2p!D

Z1„2b~12q!u,m…

~e2b~12q!u~v2m!71!
A~pW ;v!. ~17!

B. Gn
„q…

„123 . . .n;182838 . . . n8; b,µ…

So far we have discussed the one-particle properties. The above development is similarly extended to gener
many-particleq Green functions. Using the same notations as in KB, we have, in general,

Gn
~q!~12 . . .n,1828 . . . n8;b,m!5

1

i n^1&q

^T„C~1!C~2! . . . C~n!C†~18!C†~28! . . . C†~n8!…&q

5E
C
du K̃q

~2!~u!Z1„2bu~12q!,m…Gn
~1!
„12 . . .n,1828 . . . n8;2b~12q!u,m…. ~18!

To illustrate how these higher order Green functions arise, consider, for example, a many-particle system with a Ham
containing the one-body potentialV1(rW1) and the instantaneous two-body interaction potentialV2(rW1 ,rW2), which is symmetric
under interchange of 1 and 2:

Ĥ5E drW
¹W C†~rW,t !•¹W C~rW,t !

2m
1E drW V1~rW !C†~rW,t !C~rW,t !1

1

2E E drW drW8 C†~rW,t !C†~rW8,t !V2~rW,rW8!C~rW8,t !C~rW,t !.

~19!

The equation of motion obeyed by any operatorX̂(t) in the Heisenberg representation is

i
]

]t
X̂~ t !5@X̂~ t !,Ĥ~ t !#, ~20!

and so the one-particle Green function obeys the equation

S i
]

]t1
1

¹W 1
2

2m
2V1~rW1! DG~q!~1,18!5d~1218!6 i E drW2 V2~rW1 ,rW2!G2

~q!~12,1821!u t25t1
. ~21!

In a similar fashion we can also write an equation of motion forG2
(q) involving G3

(q) , and so on, obtaining a heierarchy
equations for all the Green functions. It should be noted that these equations are of the same form as in KB forq51, and this
feature is a consequence of the definition given in Eq.~1! here, in contrast to the one given in Ref.@12#. It is this feature that
allows us to employ a diagrammatic analysis of these equations in the same manner as in the conventional the
obtaining the theory in the same form for nonextensive systems as for extensive ones. In addition to the detailed d
information,G(q) contains all possible information about the statistical mechanics of the system. We have already giveq
expectation value of the density of particle in terms ofG,

(q) from Eq. ~12!. Following KB we can express theq expectation
value of Hamiltonian~19!:
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^Ĥ&q5
6 i

4
^1&qE drWF i S ]

]t
2

]

]t8
D 1

¹•¹8

m
2V1~r !2V1~r 8!GG,

~q!~rW,t;rW8,t8!urW85rW,t85t . ~22!

For the free-particle caseV1(r )50, as in Eqs.~15! and ~16!, we have

^Ĥ&q

V
5E

C
du‘ Kq

~2!~u!E
2`

` dv

2pE dDp

~2p!DS v1p2/2m

2 D Z1„2b~12q!u,m…

~e2b~12q!u~v2m!71!
A~pW ;v!. ~23!

Following Curado and Tsallis@2#, we have the grand canonical potential given by

Jq52
1

b

Zq
12q21

12q
5^Ĥ&q2

1

b
Sq2m^N̂&q , ~24!

where theq thermodynamic quantities,q pressurePq , q average number̂N̂&q , andq entropySq are,

Pq52S ] Jq

]V D
T,m

, ^N̂&q52S ]Jq

]m D
T,V

, Sq52S ]Jq

]T D
V,m

. ~25!

By writing a coupling constantl in front of the interaction energy,Ĥ5Ĥ01lV̂ where

Ĥ05E drW
¹W C†~rW,t !•¹W C~rW,t !

2m
1E drW V1~rW !C†~rW,t !C~rW,t ! ~26!

and

V̂5 1
2 E E drW drW8 C†~rW,t !C†~rW8,t !V2~rW,rW8!C~rW8,t !C~rW,t !. ~27!

we obtain, for fixedb, m, andV,

]

]l

Zq
12q21

12q
52b^V̂&q , ~28!

from which we deduce

S Zq
12q21

12q D
l51

2S Zq
12q21

12q D
l50

52bE
0

1dl

l
^lV̂&q,l . ~29!

Now ^lV̂&q,l is theq expectation value of the interaction energy for coupling strengthl. It may be expressed in terms of th
spectral weight function,

^lV̂&q,l5VE
C
du Kq

~2!~u!E
2`

` dv

2pE dDp

~2p!DS v2p2/2m

2 D Z1„2b~12q!u,m…

~e2b~12q!u~v2m!71!
Al~pW ;v!, ~30!

so that

Jq52
1

bS Zq
12q21

12q D
l51

52
1

bS Zq
12q21

12q D
l50

1VE
0

1dl

l E
C
du Kq

~2!~u!

3E
2`

` dv

2pE dDp

~2p!DS v2p2/2m

2 D Z1„2b~12q!u,m…

~e2b~12q!u~v2m!71!
Al~pW ;v!. ~31!

We have the general result for theq pressure,

Pq5
1

bS 1

Zq
q

]Zq

]V D
l50

2E
0

1dl

l E
C
du Kq

~2!~u!E
2`

` dv

2pE dDp

~2p!DS v2p2/2m

2 D Z1„2b~12q!u,m…

~e2b~12q!u~v2m!71!
Al~pW ;v!

2V
]

]VH E
0

1dl

l E
C
du Kq

~2!~u!E
2`

` dv

2pE dDp

~2p!DS v2p2/2m

2 D Z1„2b~12q!u,m…

~e2b~12q!u~v2m!71!
Al~pW ;v!J , ~32!
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from which we obtain, using Eq.~25!, that the constant term
(1/bZq

q)]Zq /]Vul50 is just theq pressurePq for free par-
ticles. We may also note that theq isothermal compressibil
ity kT,q , which is related to the velocity of sound in th
system, is given by

kT,q52
1

VS ]V

]Pq
D

T

5
1

VbH S ]m

]Pq
D

T
J 2S ]2

]m2

Zq
12q21

12q D
T,V

5q
b

VH S ]m

]Pq
D

T
J 2S K N̂

1

12b~12q!~Ĥ2mN̂!
N̂L

q

2Zq
q21^N̂&q

2D
T,V

. ~33!

The two-particle Green function is often useful in exa
ining certain correlation functions which are just related
one-particle-like functions because the physical operators
appropriate contractions of the operators appearing in
definition. As an example, consider the density fluctuatio
here the density operatorn̂(rW,t) is given by n̂(rW,t)
5C†(rW,t)C(rW,t). Thus the density-density correlatio
function is given by ^T„n̂(rW1 ,t1)n̂(rW2 ,t2)…&q
5^ T„C†(1)C(1)C†(2)C(2)…&q . We now give the results
of two of the commonly used approximations in man
particle theory in theq formalism. As in KB, we may de-
velop a diagrammatic analysis of the Green function eq
tion ~21!. Other schemes follow similarly.

C. Hartree approximation

The Hartree approximation is one of the simplest appro
mations made in many branches of physics. Thus it would
interesting to find the corresponding result in the Tsallis f
malism. In this context we determineG(q)(1,18), when
V(rW1)50 and vÞ0, with a corresponding approximat
G2

(q) . This approximation is physically motived as in sta
dard case. Thus, as a first approximation, we take

G2
~q!~12;1828!5G~q!~1,18!G~q!~2,28!, ~34!

and substitute this into Eq.~21! to obtain the Hartree result
For a translationally invariant system, Eq.~21! becomes
simple. Sincê N̂(rW2)&q is then independent of the positio
rW2 , the average potential is constant. Then,*drW2 V2(rW1

2rW2)(^N̂&q /V)5(^N̂&q /V)v wherev5*drW V2(rW). Thus we
obtain a spectral function A(pW ,v)52pd„v2p2/2m
2(^N&q /V)v…. To find the solution to the Hartree approx
mation, we solve for the density of the particle@Eq. ~17!#
using the spectral function obtained above:

^N̂&q

V
5E

C
du Kq

~2!~u!

3E dDp

~2p!D

Z1„2b~12q!u,m…

~e2b~12q!u„~^N&q/V!v1p2/2m2m…71!
.

~35!
-

re
ts
;

-

i-
e
-

The energy per unit volume form Eq.~23! is then found to be

^Ĥ&q

V
5E

C
du Kq

~2!~u!E dDp

~2p!DS ^N&q

2V
v1

p2

2mD
3

Z1„2b~12q!u,m…

~e2b~12q!u„~^N&q/V!v1p2/2m2m…71!
, ~36!

^Ĥ&q

V
5

1

2S ^N&q

V D 2

v1E
C
du Kq

~2!~u!E dDp

~2p!DS p2

2mD
3

Z1„2b~12q!u,m…

~e2b~12q!u„~^N&q/V!v1p2/2m2m…71!
. ~37!

D. Hartree-Fock approximation

In the Hartree approximation discussed above, the exp
appearance of the exclusion principle does not appear.
comes about in the Hartree-Fock approximation where
approximationG2

(q) is now

G2
~q!~12;1828!5G~q!~1,18!G~q!~2,28!

6G~q!~1,28!G~q!~2,18!. ~38!

Thus we substitute Eq.~38! into Eq. ~21!, and after some
calculation obtain

S i
]

]t1
1

¹W 1
2

2m
DG~q!~1,18!2 i E drW2^r 1uUur 2&G

~q!~2,18!u t25t1

5d~1218!, ~39!

where

^r 1uUur 2&5d~rW22rW1!E dr3
W V2~rW12rW3!

^N̂~rW3!&q

V

1 iV2~rW12rW2!G,
~q!~1,2! U

t25t1

. ~40!

Considering a translationally invariant system, we can
press Eq.~39! in terms of the Fourier-transform in space
obtain

F i
]

]t1
2E~p!GG~q!~p,t12t18!5d~ t12t18! ~41!

and

E~p!5
p2

2m
1

^N̂&q

V
v6E d3pW

~2p!3
v~pW 2pW 8!

^N~pW !&q

V
,

~42!

wherev(pW )5*drW e2 ipW •rWV2(rW) is the Fourier transform of the
potentialV2(rW), and the spectral function is of the same for
as before;A(pW ,v)52pd„v2E(pW )…. Substituting the spec
tral function into Eq.~15!, we have

^N̂~pW !&q

V
5E

C
du Kq

~2!~u!
Z1„2b~12q!u,m…

e2b~12q!u„E~p!2m…71
. ~43!
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The generalized Hartree-Fock single-particle energyE(p)
must then be obtained as the self-consistent solution of E
~42! and ~43!.

E. Response functions

We now turn our attention to rewriting the dynamic r
sponse and the scattering cross section in theq formalism in
terms of the integrals over the usual ones, as was d
above. From Ref.@6#, the dynamic linear response of a qua
tity B̂ to an external probe that generatesÂ in the q formal-
ism is

xBA
~q!~v,b,m!5 lim

e→0
E

0

`

dt e2 ivt2et
1

i
fBA

~q!~ t,b,m!, ~44!

where
x

te
t
n

s.

ne
-

fBA
~q!~ t,b,m!5Tr$P̂~Ĥ,N̂;q,b,m!@Â~0!,B̂~ t !#%. ~45!

This, in terms of the integral representation, is

xBA
~q!~v,b,m!5E

C
du K2

q~u!Z1„2bu~12q!,m…

3xBA
~1!
„v,2b~12q!u,m… ~46!

wherexBA
(1)
„v,2b(12q)u,m… is the usual Kubo dynamica

response function evaluated now at a temperature2bu(1
2q). In Ref. @6#, the general fluctuation-dissipation theore
was derived in theq formalism. Here we obtain an equiva
lent but different form of the same result. Rewriting theq
avereges of the anticommutator and commutator express
we have
CBA
~q!~ t,b,m!5 1

2 Tr P̂~Ĥ,N̂;q,b,m!@Â~0!B̂~ t !1B̂~ t !Â~0!#5 1
2 E

C
du Kq

~2!~u!Z1„2bu~12q!,m…CBA
~1!~ t,2bu~12q!,m!,

~47!

FBA
~q!~ t,b!5 lim

e→0
E

t

`

dt8e2et8Tr$P̂~Ĥ,N̂;q,b,m!@Â~0!,B̂~ t !#%5E
C
du K~q!

~2!~u!Z1„2bu~12q!,m…FBA
~q51!

„t8,2bu~12q!,m….

~48!
ing
or-
the

s

he
m-
III,
n of
s

The fluctuation-dissipation theorem due to Kubo@23# for the
extensive case (q51) is

CBA
~1!~v,b,m!5Eb~v!FBA

~1!~v,b,m!, ~49!

with

Eb~v!5
v

2
cothS bv

2 D . ~50!

Here we obtain

CBA
~q!~v,b,m!

5
v

4EC
du Kq

~2!~u!Z1„2bu~12q!,m…

3cothS 2bu~12q!v

2 DFBA
~1!
„v,2bu~12q!,m)….

~51!

We now relate the scattering function defined for e
ample, by Lovesey@17# in the q formalism as

S~q!~kW ,v,b!5
1

2pE2`

`

dt exp~2 ivt !^Â†~0!Â~ t !&q
~c! ,

~52!

whereÂ is the operator which affects the change in the sta
of the system in a scattering process. Here the superscrip~c!
denotes a canonical ensemble instead of the grand cano
-

s

ical

ensemble used earlier. This is equivalent formally to sett
m50 in the earlier development. Then, using our transf
mation, we express this scattering function in terms of
usualq51 scattering function

S~q!~kW ,v,b!5E
C
du Kq

~2!~u!Z1„2bu~12q!…

3S~1!
„kW ,v,2bu~12q!…. ~53!

From Ref.@6#, by takingB̂5Â†, we have that the imagi-
nary part of theq susceptibility, x Â†Â

(q) (v,b), can be ex-
pressed in terms of theq51 scattering function

Im x Â†Â
~q!

~kW ,v,b!5pE
C
du Kq

~2!~u!Z1„2bu~12q!…

3@12exp„2bu~12q!v…#

3S~1!
„kW ,v,2bu~12q!…. ~54!

We have thus expressed theq scattering function as well a
the imaginary part of the associatedq susceptibility in terms
of the parametric integrals over a kernel multiplied by t
usual scattering function which now depends on this para
eter, as displayed above. We will now discuss, in Sec.
three suggestions for a possible experimental investigatio
the validity of theq framework for nonextensive system
based on the results obtained here.
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III. APPLICATIONS

~a) Electron system: The momentum distribution for elec
trons is given by Eq.~15! with a lower sign. This function is
directly observable in positron annihilation experiments@15#.
We use the free electron spectral weight functionA(pW ;v)
52pd(v2pW 2/2m) in this calculation for simplicity of pre-
sentation. We first observe that the zero temperature re
for the q mean value of the total number has the same fo
as for the usualq51 case. Details of the actual calculatio
will be given here. Thus

^N̂&q5VE E E dkx

2p

dky

2p

dkz

2p
^N̂~kW !&q . ~55!

From this, we have obtained the usual Fermi sphere resul
q,1, so that, in terms of the Fermi sphere radiusq51, the
positron annihilation is found to be of the same form b
with a q-dependent correction. For small^N̂&1 as for the
small systems mentioned above, we fi

^N̂&q.^N̂&1@11@(12q)2/(22q)#(p2/5)^N̂&1
2#. In Fig. 2

we display theq dependence of the ratiôN̂&q /^N̂&1 for two
representative values of̂N̂&1 to represent the expecte
change in the number distribution that may be found in eit
positron annihilation or x-ray Compton scattering expe
ments@15# for small systems witĥ N̂&1540 and 60. Other
results can be obtained in this context such asPq

' 2
5 (^N̂&q /V)eF and Uq' 3

5 ^N̂&qeF (eF is the Fermi en-
ergy!.

(b) Boson system: The recent work on Bose condensati
of atoms@16# involves condensation of a small number
atoms of the order of 100–170 confined to a small region
space by magnetic trapping. Here we revisit this problem
calculating the transition temperature and the momen
distribution near the transition temperature to see if o
could discern theq dependence. For this purpose, we use
~17! with the upper sign, pertinent to bosons. We a
take free-particle spectral weight function,A(pW ;v)
52pd(v2pW 2/2m), and find, forq less than 1,

^N̂&q

V
5

GS 1

12qD
2pZq

q E
2`

`

du
e11 iu

~11 iu !1/~12q!

3E d3p

~2p!3

Z1„b~12q!~11 iu !,m…

eb~12q!~11 iu !~p2/2m2m!21
, ~56!

which, near the Bose condensation, is approximately fo
to be

^N̂&q

^N̂&1

.
GS 22q

12qD
2p~12q!1/2Zq

qS bc
~1!

bc
~q!D 3/2

3E
2`

`

du
e11 iu

~11 iu !1/~12q!13/2

3Z1„bc
~q!~12q!~11 iu !…. ~57!
ult

or

t

r
-

f
y
m
e
.

d

After some calculations, we obtain

^N̂&q

^N̂&1

.S Tc
~q!

Tc
~1!D 3/2 GS 22q

12qD
~12q!~1/2!GS 22q

12q
1

1

2D

3H 11
^N̂&1

~12q!~3/2!

z~5/2!

z~3/2!S Tc
~q!

Tc
~1!D 3/2

3F GS 22q

12q
1

1

2D
GS 22q

12q
12D 2q

GS 22q

12qD
GS 22q

12q
1

3

2D G J .

~58!

In Fig. 3 we display a plot of̂N̂&q /^N̂&1 versusbc
(1)/bc

(q)

for one representative value of^N̂&1 for q50.6 andq50.9.
Curilef @24# calculatedTc

(q)/Tc
(1) for q'1, and found it to

increase for̂ N̂&q /^N̂&1 equal to unity; from our Fig. 3, we
see a similar increasing trend as we go fromq50.6 to 0.9.

(c) Scattering experiments: The fabrication of quasiperi-
odic superlattices was successfully realized as early as 1
@25#, and experimentally investigated by x-ray diffractio
neutron diffraction, etc. See Ref.@26#. These systems afford

FIG. 2. Plot of^N̂&q /^N̂&1 as a function ofq for ^N̂&1540 and
60 for q near 1.
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another class of possible experimental avenue to test tq
framework when we consider thefinite size effectsthey
might display. By using some known forms for the structu
factorS(1) in Eq. ~53!, we can calculateS(q) for q,1, etc., as
was done in the other two calculations. We propose to
our framework for such scattering cross section calculati
to investigate these in some model structures. The scatte
of a neutron or x ray from a vibrating particle of massM will
be calculated as an example of our framework. For this,
operatorÂ is the Fourier transform of the particle density

Â5E drW exp~ iQW •rW !d„rW2RW ~ t !…5exp„iQW •RW ~ t !…, ~59!

whereRW denotes the atom position, andQW is the change of
wave vector of the neutron or the x ray. The expression
Â(t) can be obtained from its equation of motion, withĤ

5pW 2/(2M ), wherepW is the conjugate momentum toRW . We
obtain

Â~ t !5exp~ iQW •RW !expS i t

2M
~2QW •pW !1Q2D , ~60!

and after some algebra, we have

FIG. 3. Plot of^N̂&q /^N̂&1 as a function ofbc
(1)/bc

(q) for ^N̂&1

550, and forq50.6 and 0.9.
e
s
ng

e

r

S~q!~Q,v,b!5S 2pM2V

bQZq
q D

3S 12~12q!
Mb

2Q2S v2
Q2

2M D 2D 1/~12q!

,

~61!

whereZq is given by

Zq5VS 2Mp

~12q!b D 3/2 GS 22q

12qD
GS 22q

12q
1

3

2D ~62!

for the caseq,1. In Fig. 4, we display the static (v50)
expression

@S~q!~Q,0,b!#/@S~q51!~Q,0,b!#@~1/V!~b/2pM !3/2#12q

for different q values as a function ofbQ2/M .

IV. SUMMARY AND CONCLUSIONS

In this paper we have developed in detail a Green funct
theory for nonextensive systems based on theq ensemble of
Tsallis. By means of a contour representation@Eqs. ~5! and

FIG. 4. Plot of the static (v50),@S(q)(Q,0,b)#/
@S(1)(Q,0,b)#@1/V(b/2pM )3/2#12q, for q50.1, 0.6, 0.8, and 1 as
a function ofbQ2/M .
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~6!#, we have made this theory resemble the usual one
extensive systems given by KB, for example, even though
actual practice, the results are very different, as exempli
by the representative results given in Sec. II for a variety
situations. Before this development, thermodynamic qua
ties for model systems were computed in the Tsallis
semble as, for example, in Refs.@19,24#. With the present
work, we believe that the theory of many-particle syste
for the Tsallis ensemble has been considerably extended
placed on a par with conventional theory based on the G
sian ensemble, in that we have been able to compute
sponse functions in addition to thermodynamic quantiti
Here we have examined three physical entities which
amenable to experimental investigation, and which we h
give the possibility of a direct verification of the use of Tsa
lis ensembles. As with the examples cited in Sec. I, thq
values will have to be chosen to fit the experimental obs
vation, and thus will indicate the long-range nature of t
underlying interactions and other nonextensive featu
present in the system under investigation. All three examp
chosen to display theq dependences in the figures were f
q,1, because they were all concerned with free-particle s
tems. In fact, the case ofq different from unity is expected to
/
b-

ev

ev

s

or
in
d
f
i-
-

s
nd
b-
e-
.

re
e

r-
e
s
s

s-

apply for long-range interacting Hamiltonian systems@14#.
From a formal point of view, noninteracting and short-ran
interacting systems are mathematically well posed proble
only for q,1. In conclusion, here we have developed a f
malism associated with Tsallis statistics for describing n
extensive many-particle systems by a suitable generaliza
of the corresponding Green function techniques, so co
monly employed in such studies for extensive systems.
with the usual Green function theory, which has been tra
tionally successful in explaining experimental observatio
the present work enables us to analyze future possible
perimental work on nonextensive systems.
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