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The traditional basis of description of many-particle systems in terms of Green functions is here generalized
to the case when the system is nonextensive, by incorporating the Tsallis form of the density matrix indexed
by a nonextensive parametgr This is accomplished by expressing the many-particl@reen function in
terms of a parametric contour integral over a kernel multiplied by the usual grand canonical Green function
which now depends on this parameter. We study one- and two-particle Green functions in detail. From the
one-particle Green function, we deduce some experimentally observable quantities such as the one-particle
momentum distribution function and the one-particle energy distribution function. Special forms of the two-
particle Green functions are related to physical dynamical structure factors, some of which are studied here.
We deduce different forms of sum rules in thdormalism. A diagrammatic representation of thesSreen
functions similar to the traditional ones follows because the equations of motion for both of these are formally
similar. Approximation schemes for one-partidi&reen functions such as Hartree and Hartree-Fock schemes
are given as examples. This extension enables us to predict possible experimental tests for the validity of this
framework by expressing some observable quantities in terms af éverages[S1063-651X99)10201-0

PACS numbg(s): 05.70.Ce, 05.26:y, 05.30.Ch

[. INTRODUCTION tensive in thisg formalism. This modified form is consistent
with a recent reformulation of the formalism in Ré¢f.4],

Ever since Tsalligl] (also see Refl2]) proposed maxi- which was put forward to include the invariance property of
mum g entropy for examining nonextensive systems by em+the ensemble under the choice of origin of the scales of
ploying g mean values so as to obtain thermostatistics, it haguantities and enables us to develop a diagrammatic theory
spawned a large number of investigations on a wide varietyparallel to the conventional theory. This generalization then
of topics in this subject. Here we cite a representative set oeads us to propose possible experimental tests of nonexten-
such works of current interest in physics along with the val-sjve features predicted in such a formalism by calculating
ues of the nonextensive paramegeassociated with some of measurable quantities such as the momentum distribution
the phenomena: vy superdiffusior{3] and anomalous cor-  fynction for electrons measurable in positron annihilation
related diffusion[4]; turbulence in a two-dimensional pure 5nq x-ray Compton scattering experimefis], Bose con-
electron plasmad= 2) [5]; dynamic linear response theory jensation in confined small numbers of atdib&], and cross
[6]; perturbation and variation methods for calculation ofgo tions for scattering by external probes such as neutrons,
thermodynamic quantitids’]; thermalization of an electron- photons, etc[17] in terms of theq mean values. Section II
phonon systemq>1) [8]; low-dimensional dissipative sys- contains, the development of tlggGreen function theory. In

tems @<1) [9]; and some astrophysu:_al appllcatlo[r_is‘;)]. Sec. A, theq one-particle Green function is studied in
The g values quoted here were either fitted to experiment or

obtained from computer simulations or model calculations.de'{ail using an integral representatipn SO as tg include all
In Ref. [9] and, more recently, Ref11], the relationship values qfq. In Sec. IIB, after a b.rlef discussion of the
betweenq and the underlying dynamics has been exploredd N-particle Green function expression for thenean value

An important result emerging from this study is that theo_f_ the_ Hamiltonian, various |mportant therm(_)dynam_lc quan-
range of interactions controls the type of sensitivity to initial titi€S in theq framework are given. We outline a diagram-
conditions that a large system will exhibit. Thus the expo-matic procedure and illustrate it with the Hartree approxima-
nential sensitivity =1) of strong chaos is found for short tionin Sec. Il C, and with the Hartree-Fock approximation in
range interactions, and the power-law sensitiviy#(1) of ~ Sec. lID. In Sec. IIE, we discuss the response functions and
weak chaos for long range interactions. Thypis a measure their implications in theg framework. This serves as an ex-

of the range and size of the interactions controlling the sysample of a two-particle Green function. In Sec. I, we de-
tem behavior. Given these features, it appears expedient telop expressions for various relevant quantities amenable to
develop methods of dealing with such situations, for whichexperimental investigation, with a focus on systems with few
the Green function method is one of the most successfyparticles. We present expressions for an average number of
ones. The purpose of this paper is to present an enlarggehrticles obeying Bose and Fermi statistics at low tempera-
version of our short communicatidd2] containing a gener- tures, and also a typical scattering function, usingdtier-
alization of the thermodynamic Green functidhere in  malism. We also display these in Figs. 2, 3, and 4. We end
slightly modified form theory of the quantum statistical me- the paper with a summary and concluding remarks in Sec.
chanics of many-particle systerik3] when they are nonex- V.
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Il. GREEN FUNCTION THEORY T@WLWHL)=v(1)Wi1) for t,>t;,
In this section, we develop the thermodynamic Green =+l (1)
function theory in describing the properties of nonextensive
many-particle systems. This provides a method of discussing for <ty . 3

properties of nonextensive systems with no more conceptual

difficulty than those of the extensive systems. The method ighe creation\IfT(r_T,t) and annihilationW (r,t) operators
applicable to particles obeying any statistics, and for equilibppey the canonical commutation ruléECR’S at equal
rium or nonequilibrium situations. We present this develop-jmes:

ment in five subsections.

WOV, )FE(r HW(F,1)=0,
A. One-particle Green function (¥ ) ( Y

We adopt second-quantized particle creation and annihiand its Hermitian conjugate, (4
lation operators in the Heisenberg representation, as in the
standard book by Kadanoff and Bayi3] (henceforth cited W (r t)\l,T(F t)I\PT(; HW(F )= 5(F—r_7)

as KB) to describe a many-particle system whose Hamil-

tonian operator i$l and whose number operatoms In this | the above and in subsequent analysis, the upper sign refers
way we describe nonextensive systems at arbitrary tempergo bosons and the lower to fermions. The definitions for other
tures, and for boson or fermion systems in equilibrium, bymultiparticle q Green functions follow in the same fashion.
maximizing the Tsallis entropy qu(l—Tr[)q)/(q We may also note that the conventional grand canonical en-
—1). Trp=1 andp is the system density matrix, subject Sémble results given by KB are obtained when we take the
limit g=1 in these expressions.

There is a useful trick to calcula, in terms of a para-
metric integral over the usual grand canonical partition func-

tion, Z;=Trexp(— B(H— N)), which now depends on the
parameter multiplied by a kernel. The first such proposal by

to the constraints of fixed mean value¢H),=TrHp9 and
(N)q=TrNp? (see Ref[14] for a discussion for these con-
straintg. Thus (1)q=Tr pi=1+ (1-9)Sy, and we define
the one-particle] Green function in a form which is different

from that given in Ref[12] Hilhorst (private communication to Tsalligl8]) was valid
1 for q>1, which was extended fay<1 by Prato[19]. Here
G(1,1;8,u)= 7 (T(¥(1)¥ (1)), we employ a contour integral representation, from which the
i(1)q above representations as well as others are obtained by a
1 o suitable deformation of the conto{20]. We express the
= Tr[P(H,N;q,8,)T(¥(1)¥T(1"))], Green function in terms of a parametric integral over a dif-
i(1)q ferent form of the kernel multiplied by the usual grand ca-

(1)  nonical Green function which now depends on this param-
eter. The general contour integral form[1]

where
[ 1
A A A~ ~ ~ 1-z_ _ _ —z__
B(AL R0, Bu) =1~ B(L— ) (A~ wR) 99120, b g due-ubi v = ®
Zy=Tr[1-B(1-q)(H—uN)J¥2-9, (2)  with b>0 and Re>0, where the contouE starts from+ o
on the real axis, encircles the origin once counterclockwise,
Z and returns tot «. This representation is very general, from
TrP(A,N;q,8,8)=—, which we can obtain other integral representations. In par-
zg ticular, the results of Hilhorsf18] (q>1) and Prato[19]
. (g<1) are just deformations of the contour in E§). Other
with representations are possible, such2@ (q<1)
Zq=Tr(1—B(1—q)(H— puN))¥1-9, explab)bl™Z (= expitb) 1
f — = for b>0
2m —» (a+it)? T'(2)

Equation(2) is a consequence of the Tsallis entropy maxi-
mization stated above. Heg@and u are the Lagrange mul- =0 for b<O, (6)
tipliers associated with the two constraints, and have the

same significance as the inverse temperature and chemicglth a>0, Rez>0, and —w/2<arg(@-+it)<w/2, and
potential in the usual description. Equati@) differs from  where the countour was deformed fr@to C,, as shown in
that in Ref.[12] by the appearance of the fact(),. This  Fig. 1 below. These particular representations are useful in
definition proves to be very useful in developing a diagram-several specific calculations, for example, for a classical
matic analysis as in conventional Green function theory, agjeal gas[19] and for blackbody radiatiofi22] with q<1.

will be shown sulzsequently. Here 1 refers to the space-timgjowever, we employ Eq(5) in this paper because it is very
of a particle at (4,t;), and T is the usual Wick time- suitable in a general discussion, on the same footing, to all
ordering symbol: casexy>1, q=1, andq<1.
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1-q)u
+00 K@ (u)=— %ngu)
(Zg)
C rani-
! =i—( ( q))exp(—u)(—u)*l’“*q). 9
2m(Zy)"
S C +Q G®(1,1;B,,) is the usual grand canonical one-particle
J Green function given by KB. Similar expressions hold for
a +0 the multiparticleq Green functions. In addition, the dynamic
-— linear response function derived in Rd6] will be re-
expressed in terms of the parametric integral over the usual

time-response functionsl3]. It should be remarked that in
all subsequent analysis the choice of the deformations of the
contour in theu integration is such that the resulting integrals
-0 are all convergent, and this feature gives us the conditions on
g mentioned above and discussed in detail by L¢a@i.
Following KB, we introduce correlation functions

FIG. 1. This figure shows the contour employed to obtain Eqg.

(6).

G@(lr;ﬁ,m=.imf(l)wl'»q,
By taking b=1—(1—q)B(F—uN) and z=1+1/(1 i(1)q
—(), we obtain the expression fdf,, and by takingz . (10)
=1/(1—q) we obtain the corresponding expression fordhe G118, )= (L)W (1)),
Green function: = e i(1)q d

The notations> and < are intended to exhibit the feature
that G@(1,1;8,u)=G9(1,1;8,x) for t;>t;, and
GO(1,1;8,1)=G9(1,1; B,u) for t;<t;, . Using Eq.(8),
we may similarly expres&'® andG'? in terms of the cor-
responding grand canonical correlation functions. The spec-
G(q)(l,l'iﬂ-,u):f duKP(u)Zy(— Bu(1-q),u) tral weight function in frequency space, obtained by taking
c the Fourier transform with respect to time differences,
XGU(L,1;— Bu(l—q),p), (8) A(Fl,Flr W), introguced by KB, reflects only the properties
of the HamiltoniarH. The average occupation number in the
~2) K& (u) grand canonical ensemble of a mode with energy
Ky (u)= D w, f(o,B)=[exp(B(w—w))F1]71, takes account of the
d basic permutation symmetry of the system. We can thus ex-
where pressG@ andG? in terms of these in the following ways:

Zy(Bo) = chu KP(W)Zy(- Bu(l—a) ), ()

and

iG;‘”(Fl,Fl/;w;ﬂ,m=fcduT<5f><u>zl(—ﬁu(1—q),miG;“(rl,Fy;w;—ﬁuu—q),m
=fcdukgz><u>[1tf(w,—ﬁuu—q),M)JA(Fl,Fy ;0)Zy(— BU(1—0), ), (11

iGQ”(Fl,Fy;w;ﬁ,m:f duKP(U)Zy(~Bu(1-a),w)iGH(ry,ry ;= Bu(l—q),u)
C
=rfcdu'kgz><u>f<w,—ﬁu(l—q))A(rl,r} (@) Za(— Bu(1=0), ). (12)
Thus the spectral weight function is found to be
A(Fl,r};w>=i<e<>q>(r1,r};w;ﬂ,m—ei“)(r}r}:w:ﬁ,m:fcdu’kg”(u)A(Fl,Fl/;w>zl(—ﬂu<1—q>,m. (13)

From this we deduce an important sum rule
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> d - o - o ~ - - -
if ﬁ(e@(rl,rlf;w;ﬂ.m—ei‘”(rl.n,;w;ﬁ,u>)=J duK (W) 8(ry—r1)Zs (= BU(1—0a), w)=8(r1—ry).
% C
(14

This is just an expression of the equal time CCR of the patrticle fields. For a uniform system, we can take Fourier transforms

with respect tor;—ry, in Eq. (12), and express the one-particle momentum distribution fundtﬂ)fﬁ))q in terms of the
spectral weight function of thil-particle system.

= do A(p;0)Z1(— B(1—q)u,u)

<N(5)>q:ijcdu K'(JZ)(U) _wﬁ (e*ﬁ’(l*q)U(w*M)i 1) 13

Similarly the one-particle frequency distribution functidﬁ(w»q is given by

Z,(-pA-qup) [ d°p
(e Al-au(w-m 3 1) (ZW)DA(p'w)' (16)

<N(w)>q=¢vfcdu K (u)

HereV is the volume of théD-dimensional space in which the particles reside. The chemical potential is determined by the
expression for theg mean value of the total number operatdr

N d°p Zz 1-
%=iJ’CduKﬁf)(u)j j p 1( B(1—q)u,u) NG (17

(2m)P BA-qule=m 3 1)

B.G{®(123...n;1'2'3" ...n"; B.1)

So far we have discussed the one-particle properties. The above development is similarly extended to generalize the
many-particleq Green functions. Using the same notations as in KB, we have, in general,

G®(12...n12"...n";B,u)= (TW(DY(2) ... TmWTAHPT2) ... ¥ (n))),

1

i"(1)q

=f duKP(W)Zy (- Bu(1-q),w)GV(1A2...n,1'2" ...n"; = B(1-q)u,u). (18)
C

To illustrate how these higher order Green functions arise, consider, for example, a many-particle system with a Hamiltonian

containing the one-body potentMﬁ(Fl) and the instantaneous two-body interaction poteMﬁFl,FZ), which is symmetric
under interchange of 1 and 2:

. NVUI(rt)-VE(rt) e .1 - . . I .
fdr +f der(r)\I'T(r,t)\If(r,t)szf fdrdr’qﬁ(r,t)\v*(r',t)vz(r,r')\If(r',t)qf(r,t).

2m
(19
The equation of motion obeyed by any operatgt) in the Heisenberg representation is
N N
1= X(O)=[X(1),HD)], (20)
and so the one-particle Green function obeys the equation
g V2
T —V4(ry) |G9(1,1)=56(1-1' )+|f dr, Vy(ry,r)GY(12, 12|, (22)
1

In a similar fashion we can also write an equation of motion&’;?’ involving G, and so on, obtaining a heierarchy of
equations for all the Green functions. It should be noted that these equations are of the same form as ip=KB #ord this

feature is a consequence of the definition given in @ghere, in contrast to the one given in REE2]. It is this feature that

allows us to employ a diagrammatic analysis of these equations in the same manner as in the conventional theory, thus
obtaining the theory in the same form for nonextensive systems as for extensive ones. In addition to the detailed dynamical
information,G(® contains all possible information about the statistical mechanics of the system. We have already given the
expectation value of the density of particle in termsGﬁ) from Eq. (12). Following KB we can express theg expectation

value of Hamiltonian(19):
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G(ﬁ)(r*,t;r*’,t’)h,:;'t,:t. (22

R TR0 SV
|Gt o0 |~ Va=Var)

. *i
(R (g | oF
For the free-particle casé;(r)=0, as in Eqs(15) and(16), we have

(H >q [w+p?2m| Zy(—B(1—q)u,p) -
fdu K<2>(u)f_m27J 2n )D > (e—ﬂu—q)u(w—m;l)A(p’w)' (23

Following Curado and Tsallig2], we have the grand canonical potential given by
o 1zg-1 1 .
S0=- 5 1 = (e S, (24

where theq thermodynamic quantities) pressureP,, q average numbe(rﬁl}q, andg entropyS, are,

ﬁEq) () (&Eq) <
Za) = =23, s=-
N 1. In )1y

By writing a coupling constank in front of the interaction energyd =Hq+\V where

Py=—

(9,_,q
= ) : (25

. NUH(rt) -V (rt) .. R R
H0=fd o fdrvl(r)w(r,t)\lf(r,t) (26)
and
\A/=%fdedF’ PO OVL(r,r )P (r H)W(rt). (27)
we obtain, for fixed3, w, andV,
g Zg -1 .
N 1-q =BV 29
from which we deduce
(Zéq—l) (zéq—1> fldx 0 9
1_q ‘1 1_q }\:o_ B 0 A < >q,>\'

Now ()\\A/>qv>\ is theq expectation value of the interaction energy for coupling strengtht may be expressed in terms of the
spectral weight function,

2 a)—p2/2m Z,(—B(1—q)u,u)
<)\V>qA_VJ dUK (U)ffmzwj (271_) 2 (e Al aule-w 1)

1(2(1]‘*—1) 1(2}1‘1—1) vfld}\fd (2
=—= =—— + — [ du u
VR I N I e R NI W S R

[@—p?2m| Z,(- B(1—q)u,u)
XJ‘foo fzﬂ-) 2 )(eﬂ(lQ)U(w/L);l)

A\(P; o), (30)

so that

i

A(P;w). (31)

We have the general result for tlygpressure,

HA (o= p2/2m Z(-pA-qup) -
| = (2) .

5 _1( 1 9z,
B\ za v
B\ z] ‘o

d | ridn [ @—p?2m\ Z;(— B(1—q)u,u) R
_ _ (2) .
\ fo A Ldqu (u)f f(zw)D 2 )(e—ﬁu—q)u(w—m;l)Ah(p"") '

(32
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from which we obtain, using E¢25), that the constant term, The energy per unit volume form E(R3) is then found to be
(1//szg)azq/av|h=0 is just theq pressureP for free par-

ticles. We may also note that tligisothermal compressibil- < 2 <N>q
~v - du K (u)
ity «tq, Which is related to the velocity of sound in the V 2m
system, is given by
Z;(—=B(1-q)u,u)
17
‘r :_E(ﬂ> _ (‘?_“) ]2 P % q_l) e o oan-w gy (20
9 VVaPg/ . VB|\dPg/ | au? 1-1 . )
) (H)g_ L/{N)g|* f L
:qf (‘9_“> N ! N v 2l v e (27)P\2m
VI1Pa/o) 1\ 1-pa-a)H-pl) [
Z;(—=B(1-q)u,u) 37
2912 33 (e~ BL-auN)gVIv +po2m=m) 1)
q q

™ D. Hartree-Fock approximation

The two-particle Green function is often useful in exam-  |n the Hartree approximation discussed above, the explicit
|n|ng certain correlation functions which are JUSt related thppearance of the exclusion pr|nc|p|e does not appear. This

one-particle-like functions because the physical operators aigomes about in the Hartree-Fock approximation where the
appropriate contractions of the operators appearing in itgpproximationGL? is now

definition. As an example, consider the density fluctuations;
here the density operaton(r,t) is given by n(r,t) GW(12;1'2")=G9(1,1)G9(2,2)
=¥'(r,t)¥(r,t). Thus the density-density correlation - GO(1,2)G6@(2,1). (39)
function is given by <T(n(r1, )n(rz, 2))q

=( T(¥T(1)¥(1)¥'(2)¥(2))),. We now give the results Thus we substitute E¢38) into Eq. (21), and after some
of two of the commonly used approximations in many- calculation obtain

particle theory in theg formalism. As in KB, we may de- .
velop a diagrammatic analysis of the Green function equa—( g Vi

tion (21). Other schemes follow similarly. oty +%

@(1,1 —|fdr2(r1|U|r2>G '(2,1) lt=t,

C. Hartree approximation =46(1-1", (39)
The Hartree approximation is one of the simplest approxiwhere
mations made in many branches of physics. Thus it would be < )>
interesting to find the corresponding result in the Tsallis for- f r3))q
rqujr S(ry—r drzVy(r—r
malism. In this context we determin€(®(1,1'), when {ralUlrz)=a(rz—ry) aValf=ra)—

V(F1)=0 and v#0, with a corresponding approximate

G . This approximation is physically motived as in stan- FiVo(r—r,)G9(1,2) (40)
dard case. Thus, as a first approximation, we take tr=ty
G(2q>(12;1,2,):G(q>(1’1,)G(q)(2,2/), (34) Considering a translationally invariant system, we can ex-

press Eq(39) in terms of the Fourier-transform in space to

and substitute this into E421) to obtain the Hartree result, obtain
For a translationally invariant system, ER1) becomes

J
simple. Since(N(r,))q is then independent of the position [I ——E(p)} @(p,ty—ty)=8(t;—t1/) (41)
r2, the average potential is constant. Thdrtjrzvz(rl
—12) ((NYq/V) = ((N)q/V)v wherev = fdr V,(r). Thus we ~and

obtain a spectral function A(|5,w)=27r5(w—p2/2m (N) d3p (N(ﬁ))
—((N)q/V)v). To find the solution to the Hartree approxi- E(p )_ AR S j —Sv(ﬁ_ﬁ’)—q,
mation, we solve for the density of the partidlgq. (17)] v (2m) v
using the spectral function obtained above: (42)
wherev (p)=Jdf e P""V,(r) is the Fourier transform of the
A f du K (u) potentialV,(r), and the spectral function is of the same form
¢ as before A(p,w)=278(w—E(p)). Substituting the spec-
f d®p Z,(— B(1—q)u, w) tral function into Eq.(15), we have
2 -
(27T)D (efﬁ(lfq)u(«N)q Ju+pi2m—p) 1) N Z,(—B(1-q)u,
< (p)>q :f du K(z)( ) 1(=B( qu,u) (43
(35 \Y e~ BA-qUEP) -w 11
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The generalized Hartree-Fock single-particle enekd{p)

must then be obtained as the self-consistent solution of Egs.

(42) and (43).

E. Response functions

We now turn our attention to rewriting the dynamic re-

sponse and the scattering cross section imgtfemalism in

terms of the integrals over the usual ones, as was done
above. From Ref.6], the dynamic linear response of a quan-

tity B to an external probe that generafesn the g formal-
ism is

Xfan)(wa'p‘): lim J;) dt ef'wtféti—qbgq&(t,ﬁyﬂ): (44)

e—0

where

E. K. LENZI, R. S. MENDES, AND A. K. RAJAGOPAL
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PN, B, 1) =Tr{P(A,N;q,8,1)[A(0),B(1)]}. (45

This, in terms of the integral representation, is

X80~ [ du gz, pu(1-a) )

X x§4(@,— B(1—q)u, u) (46)

where y{2(w,— B(1—q)u,u) is the usual Kubo dynamical
response function evaluated now at a temperatuygu(1

—q). In Ref.[6], the general fluctuation-dissipation theorem
was derived in they formalism. Here we obtain an equiva-
lent but different form of the same result. Rewriting the
avereges of the anticommutator and commutator expressions,
we have

WER(t,B.1)=3TrP(H,N;q,8,1)[A(0)B(1) +B(DA(0)]=3 fcdu K (U)Z1(= Bu(1-a), m)WEA(t, — Bu(1-q), ),

(47)

DL, B) = lim ft “dtre U Te{B(AR;q,8.)[A0),B(1)]} = fcdu K& (u)Z1(— Bu(1—q), w)PER Y (', — Bu(1—0q), w).

e—0

The fluctuation-dissipation theorem due to KUyi28] for the
extensive caseg=1) is

TEA(0,B,1) =E () PE(w,8,1), (49)
with

E ()= Zcot] 22 50
B(a))— ECOt 7 . ( )
Here we obtain

ViR(w,B,1)

-7 fcdu K (WZa(= pu(1-a), )

xeoth(w)%l& 0, — BU(1=0), 1)),

(59

We now relate the scattering function defined for ex-

ample, by Lovesey17] in the q formalism as

SOk, w,B)= %f:dtexq—iwt)(AT(O)A(t»(C) ,
(52)

(48)

ensemble used earlier. This is equivalent formally to setting
p=0 in the earlier development. Then, using our transfor-
mation, we express this scattering function in terms of the
usualg=1 scattering function

S9K,0.8)= | duKP()Z,(-pu-a)
C
X SV(K,w,— Bu(1—q)). (53

From Ref.[6], by takingB=AT, we have that the imagi-
nary part of theq susceptibility, Xfﬂ);\(w,ﬁ), can be ex-
pressed in terms of thg=1 scattering function

Imx(l\i);‘('z’“”ﬂ)zwfcd“ K (u)Z4(— Bu(1—a)

X[1—exp(—Bu(l-q)w)]
X SV, w,— Bu(1—q)). (54)

We have thus expressed thescattering function as well as
the imaginary part of the associatgéusceptibility in terms

of the parametric integrals over a kernel multiplied by the
usual scattering function which now depends on this param-
eter, as displayed above. We will now discuss, in Sec. Il

whereA is the operator which affects the change in the statethree suggestions for a possible experimental investigation of
of the system in a scattering process. Here the superscyipt the validity of theq framework for nonextensive systems
denotes a canonical ensemble instead of the grand canonidadsed on the results obtained here.
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Ill. APPLICATIONS
(a) Electron systenirhe momentum distribution for elec- 70 1
trons is given by Eq(15) with a lower sign. This function is
directly observable in positron annihilation experimgiis].
We use the free electron spectral weight functidp; ) 80
=278(w— 52/2m) in this calculation for simplicity of pre- <N> =60
sentation. We first observe that the zero temperature resutt [ \ <N>1= 40
for the g mean value of the total number has the same form 50 1 1
as for the usuatj=1 case. Details of the actual calculation
will be given here. Thus A
b
v 40+
N _fofdkdk dk, A - N
From this, we have obtained the usual Fermi sphere result for 01
g<1, so that, in terms of the Fermi sphere radisl, the
positron annihilation is found to be of the same form but
with a g-dependent correction. For sm4lN), as for the 2T
small systems mentioned above, we find
(R)q=(R)a[1+[ (1~ @)?(2- @) (=*/5)N)]. In Fig. 2 ol
we display theq dependence of the ratidN),/(N), for two
representative values 0¢N> . to represent the expected
change in the number distribution that may be found in either 0 — o ;
positron annihilation or x-ray Compton scattering experi- 080 092 0894 086 0S8 100
ments[15] for small systems witfN); =40 and 60. Other q
results can be obtained in this context such Bg
~§(<N)q/V)eF and Uqwém)qep (e is the Fermi en- FIG. 2. Plot of(N),/(N), as a function of for (N); =40 and
ergy). 60 for g near 1.

(b) Boson systenThe recent work on Bose condensation
of atoms[16] involves condensation of a small number of After some calculations, we obtain
atoms of the order of 100-170 confined to a small region of
space by magnetic trapping. Here we revisit this problem by (2_q)

r

calculating the transition temperature and the momentum (N) T(@) 372 1g
distribution near the transition temperature to see if one A Y ) 9
could discern thej dependence. For this purpose, we use Eq.  (N); | TV (1-q) 1’2)1“ q 1
(17) with the upper sign, pertinent to bosons. We also 1-q 2
take free-particle spectral weight functionA(p; )
=278(w— p?/2m), and find, forq less than 1, (R, £(5/2)/ T 312
X
R | (1—q)®2 (32| T
<N>q 1-q fx g eltiu
= u
v 27Z3 J-=  (1+in)M9 2-q 1 2—q
r r‘f’z r 1T
xj P ZEA-QAtiV.L x| gy
(2)3 B aNLriu(pTam—p) _ 7’ F(_q+2 F(l_q+ E)
—q —-q
which, near the Bose condensation, is approximately found (58)

to be

In Fig. 3 we display a plot ofN), /(N); versusg{"/p®

2—q A
1)) 312 for one representative value ON), for g=0.6 andg=0.9.

(N)q _ F(ﬁ) (B
Ry, 2m(1-q)¥2z3\ g%

(
¢ Curilef [24] calculatedTW/T( for g~1, and found it to

increase for(RI)q/(l(l)l equal to unity; from our Fig. 3, we
see a similar increasing trend as we go frqm0.6 to 0.9.

. 1+iu
X du (c) Scattering experiment3he fabrication of quasiperi-
S\ U(1-q)+312 ; : .
-»  (1+iu) 4 odic superlattices was successfully realized as early as 1985

@ _ [25], and experimentally investigated by x-ray diffraction,
XZy(Be(1—0q)(1+iu)). (57)  neutron diffraction, etc. See RdR6]. These systems afford
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FIG. 4. Plot of the

static  ¢=0),[S”(Q,0,8)]/
. ) [SY(Q,0,8) [IN(B/2mM)321~4, for g=0.1, 0.6, 0.8, and 1 as
another class of possible experimental avenue to test|the , ,nction ofBQUM.

framework when we consider thénite size effectdhey

might display. By using some known forms for the structure

factorS™V) in Eq. (53), we can calculat&® for q<1, etc., as

27M2V
' ' S(q)(Q,w,B)=
was done in the other two calculations. We propose to use ﬁng
our framework for such scattering cross section calculations Y1-q)
to investigate these in some model structures. The scattering Mg Q%2
of a neutron or x ray from a vibrating particle of madawill X|1=-(1-a) 2Q2 “T5Mm '
be calculated as an example of our framework. For this, the
operatorA is the Fourier transform of the particle density, (61)
whereZ, is given by
A:f drexp(iQ -1 8(r—R(t))=expliQ-R(t)), (59) o T 2-q
. —V( 2M 7 ) 1-q 62
a Tl(1- 2—-q 3
) ) (1-a)B r( a, )
whereR denotes the atom position, aflis the change of

A(t) can be obtained from its equation of motion, with

1—-q 2
wave vector of the neutron or the X ray. The expression fog,. o caseq<1. In Fig. 4, we display the statice(=0)
=p2/(2M), wherep is the conjugate momentum ®. We
obtain

and after some algebra, we have

expression

[S9(Q,08)1/[S9"(Q,08)I[(IN)(Bl2M)¥?]1

for differentq values as a function g8Q?%/M.
A - - it - -
A(t)=e><p(iQ~R)eXp<m(2Q- P+Q%[, (60

IV. SUMMARY AND CONCLUSIONS

In this paper we have developed in detail a Green function
theory for nonextensive systems based onglemsemble of
Tsallis. By means of a contour representatj&us. (5) and
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(6)], we have made this theory resemble the usual one foapply for long-range interacting Hamiltonian systepig].
extensive systems given by KB, for example, even though, iffrom a formal point of view, noninteracting and short-range
actual practice, the results are very different, as exemplifiethteracting systems are mathematically well posed problems
by the representative results given in Sec. Il for a variety ofonly for q<<1. In conclusion, here we have developed a for-
situations. Before this development, thermodynamic quantimalism associated with Tsallis statistics for describing non-
ties for model systems were computed in the Tsallis enextensive many-particle systems by a suitable generalization
semble as, for example, in Refd9,24]. With the present of the corresponding Green function techniques, so com-
work, we believe that the theory of many-particle systemamonly employed in such studies for extensive systems. As
for the Tsallis ensemble has been considerably extended andth the usual Green function theory, which has been tradi-
placed on a par with conventional theory based on the Gibbtionally successful in explaining experimental observations,
sian ensemble, in that we have been able to compute réhe present work enables us to analyze future possible ex-
sponse functions in addition to thermodynamic quantitiesperimental work on nonextensive systems.

Here we have examined three physical entities which are

amenable to g)fperimentgl invest_igatipn, and which we hope ACKNOWLEDGMENTS

give the possibility of a direct verification of the use of Tsal-

lis ensembles. As with the examples cited in Sec. I, dhe Professor C. Tsallis made valuable remarks to improve
values will have to be chosen to fit the experimental obserthe presentation of this work, for which many thanks are due.
vation, and thus will indicate the long-range nature of theA.K.R. acknowledges the financial support for his travel, and
underlying interactions and other nonextensive featuresongenial local hospitality from UFRN and CBPF, Brazil,
present in the system under investigation. All three examplewhich made this collaborative work possible. He also ac-
chosen to display thg dependences in the figures were for knowledges the partial support of his research by the U.S.
g<1, because they were all concerned with free-particle sysOffice of Naval Research. Partial support from CNPq and
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